首页> 外文OA文献 >Supervised and Unsupervised Speech Enhancement Using Nonnegative Matrix Factorization
【2h】

Supervised and Unsupervised Speech Enhancement Using Nonnegative Matrix Factorization

机译:使用非负矩阵的监督和无监督语音增强   因式分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reducing the interference noise in a monaural noisy speech signal has been achallenging task for many years. Compared to traditional unsupervised speechenhancement methods, e.g., Wiener filtering, supervised approaches, such asalgorithms based on hidden Markov models (HMM), lead to higher-quality enhancedspeech signals. However, the main practical difficulty of these approaches isthat for each noise type a model is required to be trained a priori. In thispaper, we investigate a new class of supervised speech denoising algorithmsusing nonnegative matrix factorization (NMF). We propose a novel speechenhancement method that is based on a Bayesian formulation of NMF (BNMF). Tocircumvent the mismatch problem between the training and testing stages, wepropose two solutions. First, we use an HMM in combination with BNMF (BNMF-HMM)to derive a minimum mean square error (MMSE) estimator for the speech signalwith no information about the underlying noise type. Second, we suggest ascheme to learn the required noise BNMF model online, which is then used todevelop an unsupervised speech enhancement system. Extensive experiments arecarried out to investigate the performance of the proposed methods underdifferent conditions. Moreover, we compare the performance of the developedalgorithms with state-of-the-art speech enhancement schemes using variousobjective measures. Our simulations show that the proposed BNMF-based methodsoutperform the competing algorithms substantially.
机译:减少单声道嘈杂语音信号中的干扰噪声多年来一直是艰巨的任务。与传统的无监督语音增强方法(例如Wiener滤波)相比,有监督的方法(例如基于隐马尔可夫模型(HMM)的算法)可产生更高质量的增强语音信号。但是,这些方法的主要实际困难是,对于每种噪声类型,都需要先验训练模型。在本文中,我们研究了一种使用非负矩阵分解(NMF)的新型监督语音降噪算法。我们提出了一种新的基于NMF(BNMF)的贝叶斯公式的语音增强方法。为了规避训练和测试阶段之间的不匹配问题,我们提出了两种解决方案。首先,我们将HMM与BNMF(BNMF-HMM)结合使用,以得出语音信号的最小均方误差(MMSE)估计量,而没有有关基础噪声类型的信息。其次,我们建议通过在线学习所需的噪声BNMF模型,然后将其用于开发无监督语音增强系统。进行了广泛的实验以研究所提出的方法在不同条件下的性能。此外,我们使用各种客观指标将先进算法的性能与最新的语音增强方案进行了比较。我们的仿真表明,所提出的基于BNMF的方法明显优于竞争算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号